Multi-voxel pattern analysis of fMRI data predicts clinical symptom severity

نویسندگان

  • Marc N. Coutanche
  • Sharon L. Thompson-Schill
  • Robert T. Schultz
چکیده

Multi-voxel pattern analysis (MVPA) has been applied successfully to a variety of fMRI research questions in healthy participants. The full potential of applying MVPA to functional data from patient groups has yet to be fully explored. Our goal in this study was to investigate whether MVPA might yield a sensitive predictor of patient symptoms. We also sought to demonstrate that this benefit can be realized from existing datasets, even when they were not designed with MVPA in mind. We analyzed data from an fMRI study of the neural basis for face processing in individuals with an Autism Spectrum Disorder (ASD), who often show fusiform gyrus hypoactivation when presented with unfamiliar faces, compared to controls. We found reliable correlations between MVPA classification performance and standardized measures of symptom severity that exceeded those observed using a univariate measure; a relation that was robust across variations in ROI definition. A searchlight analysis across the ventral temporal lobes identified regions with relationships between classification performance and symptom severity that were not detected using mean activation. These analyses illustrate that MVPA has the potential to act as a sensitive functional biomarker of patient severity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voxel Selection of fMRI Data using Multi- Voxel Pattern Analysis to Predict Neural Response

fMRI system shows that all the information of the brain that is represented in the subject of the brain at a particular point in time. The MVPA approach has lead to several impressive facts of brain reading. fMRI data uses Multivoxel pattern analysis (MVPA) approach to relate the neural activities to cognition. A challenging factor is to build a generalizable classification model because the nu...

متن کامل

Combined MEG and fMRI model

An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...

متن کامل

Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis

Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we...

متن کامل

The advantage of brief fMRI acquisition runs for multi-voxel pattern detection across runs

Functional magnetic resonance imaging (fMRI) studies are broken up into runs (or 'sessions'), frequently selected to be long to minimize across-run signal variations. For investigations that use multi-voxel pattern analysis (MVPA), however, employing many short runs might improve a classifier's ability to generalize across irrelevant pattern variations and detect condition-related activity patt...

متن کامل

Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA

Multi-voxel pattern analysis (MVPA) is a fruitful and increasingly popular complement to traditional univariate methods of analyzing neuroimaging data. We propose to replace the standard 'decoding' approach to searchlight-based MVPA, measuring the performance of a classifier by its accuracy, with a method based on the multivariate form of the general linear model. Following the well-established...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 57 1  شماره 

صفحات  -

تاریخ انتشار 2011